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Abstract- In this paper, results of the stress analysis of multilayered plates subject to thermal and
mechanical loads are presented in the context of the three-dimensional quasi-static theory of
thermoelasticity. The governing equations for a plate composed of monoclinic layers and subject to
any given temperature and mechanical load distributions are derived in terms of displacements.
Making use of a Navier-like approach, exact three-dimensional solutions are obtained for cross
ply and antisymmetric angle-ply laminated rectangular plates subject to thermomechanical loads.
Polynomial and exponential temperature distributions through the thickness are considered.
Numerical results for plates with the simply supported boundary conditions are presented. It is
shown that the inplane shear stresses at the corners are unbounded when plate faces are subject to
uniform heating.

I. INTRODUCTION

Temperature changes often represent a significant factor, and sometimes the predominant
cause of failure of composite structures subject to severe environmental loads. Debonding
of layers and longitudinal cracks in the matrix are typical failure mechanisms in composite
thin-walled members due to excessive stress levels caused by thermal stresses. For instance,
in fiber-reinforced composites, this is due to the fact that the thermal expansion coefficients
in the direction of fibers are usually much smaller (even negative) than those in the transverse
direction, resulting in high normal stresses in the layers and high shear stresses at the
interfaces between layers with different fiber orientations.

Various first- and higher-order theories, originally developed for the analysis of iso
thermal problems of laminated plates, have been extended to include thermoelastic effects
[see e.g. Stavsky (1963), Nemirovskii (1972), Shaldyrvan (1980), Bapu Rao (1979), Wu
and Tauchert (1980a, b), Reddy and Hsu (1980), Khdeir and Reddy (1991), Tauchert
(1986,1991) and Noor and Burton (1992a, b)]. In these displacement based theories, CD_
continuous functions are used to define the displacement variation over the whole laminate
thickness. As is well known, these kinds of models cannot be used to predict accurate
through-the-thickness stress distributions for isothermal bending problems [see Reddy
(1989, 1995), Savoia and Reddy (1992) and Savoia et al. (1994)]. In the case of thermal
loading, these models have to be used even more carefully. However, in none of the
above referenced papers has the accuracy of the proposed formulations been assessed by
comparisons with exact three-dimensional solutions, as is usually done to validate new
theories for isothermal bending plate problems. This is probably due to the lack of exact
solutions. To the authors' knowledge, exact solutions are available only for cross-ply
cylindrical panels and doubly curved shells under prescribed temperature fields [see Huang
and Tauchert (1991a, b)], for steady-state thermoelasticity problems of anisotropic slabs
[see Thanjitham and Choi (1991)], and for free vibration and buckling problems of angle
ply plates subject to uniform heating [see Noor and Burton (1992a, b)].

593

SAS 32: 5-C



594 M. Savoia and J. N. Reddy

Tanigawa et at. (1989, 1991) pointed out the importance of performing transient
thermal stress analyses when the plate is suddenly exposed to temperature changes. Using
the Laplace transform method for the temperature field and adopting the classical lami
nation plate theory, they showed that considering only the steady-state thermal behavior
often is not conservative. Nevertheless, the classical lamination theory did not allow them
to evaluate the shear stress components, which playa very important role in the failure
mechanisms of composite structures.

In the present study, three-dimensional solutions of rectangular multilayered plates
subject to thermomechanical loads are derived within the framework of the quasi-static
theory of linear thermoelasticity. Through-the-thickness temperature distributions varying
according to polynomial as well as exponential laws through each individual layer are
considered, so leaving the possibility of analysing both steady-state and transient thermal
conditions. Three-dimensional exact solutions are derived for cross-ply and antisymmetric
angle-ply laminated plates with simply supported boundary conditions. Numerical results
for steady-state and transient problems of multilayered and sandwich plates subject to
prescribed temperature distributions at the top and bottom faces are presented. It is
shown that the displacements are (>O-functions through the thickness of the laminate, with
discontinuous derivatives at the interfaces. The displacements obtained from the present
exact three-dimensional solution are often very different from linear distributions through
the whole laminate thickness, as is assumed by classical and first-order theories. This is the
case with thermal bending of angle-ply or symmetrically laminated plates subject to uniform
temperature distribution through the thickness. Hence, in those cases the classical and first
order theories fail to give accurate solutions.

For cross-ply plates, thermal strains are shown to cause high stresses even in directions
different from those of the fibers. For thermal bending of angle-ply plates, inplane normal
and shear stress distributions do not vary significantly with plate dimensions, but they are
found to change significantly for different lamination schemes. Maximum transverse shear
stresses are found systematically at the layer interfaces. The transient behavior of a plate
suddenly exposed to a temperature change is also studied, making use of the Biot variational
principle [see Biot (1970)] to evaluate the temperature field in the plate.

Finally, in the last section the convergence of Navier-like solutions for plates subject
to thermal loads is discussed. It is shown that, for the type of simply supported boundary
conditions suggested by the approach, the inplane shear stresses at the corners of the plate
turn out to be unbounded, giving rise to an unbounded inplane twisting moment.

2. BASIC RELAnONS

A laminated plate ofconstant thickness and constituted by L homogeneous anisotropic
layers is considered. The plate is referred to a orthogonal coordinate system (0; XW '3)'
where the x, (a = I, 2) axes lie in the reference plane °of the plate and X 3 is in the transverse
direction. The top and bottom faces of the plate and the layer interfaces, located at
X3 = X3t, X3h and X3i (i = 1, L-l), are denoted by 0" 0h and Qi' respectively. The dis
placement component in the Xi (i = I, 3) direction is denoted by U f • It is assumed that the
layers have a plane of thermoelastic symmetry parallel to the plate midplane. As a conse
quence, the coefficients of the elasticity tensor Cijkl' the thermal conductivity tensor kij, and
the thermal expansion tensor ,aij take a special form with respect to the material coordinates.

The quasi-static theory of linear thermoelasticity is adopted in the present study, i.e.
the coupling between the heat conduction problem and the elasticity problem is neglected
[see Boley and Weiner (1960) and Nowinski (1978)]. This amounts to neglecting the
temperature changes caused by deformations due to external loads, and to consider slow
time rate of change in the temperature of the body. Hence, the general thermal stress
problem separates into two distinct problems to be solved consecutively; the heat con
duction problem and the elasticity problem for a plate under a prescribed temperature field.

First of all, the plate is considered sufficiently extended so that its edges have no
influence on the heat conduction problem. In the absence of internal heat sources, the heat
conduction is governed by the following boundary-value problem for any time t > 0 :
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cT, +k,p T ,Ii +k" T 33 = 0

k 33 T, =13 or T= t at 0h,O,
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(1 a)

(1 b)

(lc)

where t and h are prescribed temperatures and heat fluxes, c is the specific heat, and the
bracket [.] denotes the jump in the enclosed argument. Moreover, unless stated otherwise,
throughout the paper greek and italic subscripts assume the values (1,2) and (1,2,3),
respectively, and the summation convention over repeated indices is used.

As for the elasticity problem, the strain-displacement relations and the equilibrium
equations for each individual layer and at the layer interfaces are [see Savoia and Reddy
(1992)]

(2)

(3a)

(3b)

(3c)

(4)

where the surface loads qi are equal to q; at Oe = Ot and - q7 at Oe = 0h, and hi are the
body forces. Finally, for layers made of monoclinic material, the Duhamel-Neumann
constitutive equations of thermoelasticity can be written as [see Nowinski (1978)]

(J,p = CXfJ1b(£:'6-£?b)+Cxlm(£33-£~3)

(J 33 = C 33"o(ey,o - e?,j) + C3333 (e33 - £~3)

(5)

where

(6)

are the thermal strains in the plane of the plate and in the transverse direction X3, respec
tively, and T is the temperature field measured from the reference temperature (at time
t = 0) when the plate is assumed to be stress free. Making use of eqns (2), (5) and (6), the
equilibrium equations (3) can be expressed in terms of the displacement components and
of the assigned temperature field as follows:

C'fJyoU",ofJ + C XfJ3 3U 3,3/J + Cx3y3 (UY,3 3 +U3,y3) = h, + (C'fJyo(lyo +C'P33 (l33) TfJ

CB-;oUy.,03 + C3333 U3,33 + C X3 )'3 (U;'.3' +U3,y,) = h3 + (C331.b(llo + C33 33(l33) T,3 (7a)

C.3y3(Ul,3+U3,Y) = gO' C 33 ;.,jU;"O + C 3333 U3,3 = Q3+(C33yo(lyo+C3333(l33)T at Oe (7b)

[C,3y3(Uy,3+U3,y)] = 0, [C33;6U;.",+C3333U3,3] = [C33y.o(lyo + C 3333 (l33]T at Qj. (7c)

Note that thermal strain effects appear in the form of equivalent body forces and
transverse surface loads applied at the external faces and at the interfaces of the plate. The
last terms are particularly significant for laminae with highly dissimilar inplane elastic
coefficients C'fJ'iO and thermal expansion coefficients (lyb, as is the case of fiber-reinforced
composites.
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3. THERMALLY INDUCED DEFORMATIONS

In the framework of the quasi-static theory ofthermoelasticity, any transient or steady
state thermal stress analysis can be carried out by solving the heat conduction problem first
[so determining the three-dimensional temperature field T (x" X3)], and then solving the
elasticity problem and determining thermal deformations and stresses from eqns (2), (5)
and (6).

Making use of Fourier series expansions or Laplace transforms [see e.g. Boley and
Weiner (1960), Carslaw and Jaeger (1965) and Nowinski (1978)] the heat conduction
problem can be solved exactly for rectangular laminated plates [see Padovan (1975a, b) and
Tanigawa et al. (1991)], for any given temperature distribution or thermal conditions
prescribed at the top and bottom of the plate. In this paper, greater attention will be paid
to the solution of the elasticity problem; a general temperature field will be considered, for
which a representation by means of double Fourier series with respect to the plate coor
dinates x, is used:

x~

T(Xx,X3) = L Tm,m/i(X3) sin (b,xx) sin (bfixfi)
nJ':t..mfj=!

(8)

where b, = m,n/LX' L, is the length of the plate edge in the Xx direction. In eqn (8) and in
the following, it is assumed that fJ i= rx, i.e. when the free index rx is equal to 1, fJ = 2 and
vice versa. The notation adopted here is very useful to write the equations in compact form.
With reference to eqn (8), the cases of polynomial or exponential temperature Tm,m/X3)
distribution through each layer are considered:

or

R

T~,,n'IJX3) = L A,(x3)'
r = 0

(9a)

(9b)

where R is the number of terms used in the temperature representation. In Sections 4 and
5 it will be shown that these two cases arise very often when exact or approximate solutions
of both transient and steady-state heat conduction problems are obtained.

3.1. Cross-ply simply supported rectangular plates
Consider a rectangular laminated plate consisting of any number of orthotropic layers,

with principal directions of orthotropy parallel to the plate edges (cross-ply lamination
scheme). Since the planes Xx-X3 are planes of elastic symmetry for each layer, the ther
moelastic coefficients with an odd number of equal indices are zero, i.e. C",!!, C.,3fI3, C.'fi33
and rx'fl' where, according to the notation introduced before, fJ i= rx.

For a rectangular plate with simply supported boundary conditions, the three-dimen
sional elasticity solution can be obtained by making use of a Navier-like approach, by
expanding the temperature field [see eqn (8)] and the mechanical loads in terms of double
trigonometric series:

'x

q,(x,) = L Q~;;;;;II cos (b,x,) sin (bfixfl)
m'J..mp=l

(10a)

(10b)
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x

b,(x" X3) = I B~"mp cos (6,xJ sin (6fixfi)
m'X,m/l= I

c,;;

b3(x"X3) = I B~,mIJsin(6,x,)sin(6fJxp),
m'1.,ln#= I
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(We)

(10d)

In eqns (10a) and (lOb), t and b denote the top and bottom of the plate. For each term
of order rna, rnfi the displacement components are written in the form

u, = U,(X3) cos (6,XJ sin (6fixp)

U3 = U3(X3) sin (6,Xa) sin (6fixfi) (11)

where Ua(X3) and U3(X3) are unknown functions defined through the thickness. Making use
of eqns (2), (5), (6) and (8) it is easy to verify that eqns (11) satisfy the SS-l simply
supported boundary conditions [see e.g. Whitney and Leissa (1969) and Reddy (1995)],
up = U3 = 0, (f" = °at the plate edges located at x, = 0, La. Hence, substituting eqns (8)
and (11) in eqns (4) and (7), the following system of non-homogeneous ordinary differential
equations for each layer is obtained:t

+(C"33 +C,3,3)6,U3.3 = Ba(x3)+ (Caxxarxa, +C"fifirxPp)6,T(X3)

- 2 3 dT(x 3 )
- (CYi'33 + Cy3(3)(\Uy,3 - Cy3y3 6,. U3+C3333 U3,33 = B (X3) + (Cyy33 rxyy +C3333 rx 33) -d--

X 3

(12a)

which are subject to the following conditions at the two external faces and at the interfaces
of the plate:

[UaJ = [U3] = 0, [C,3,3(U,,3+6,U3)] = 0,

[-CYY336yUy+C3333U3,3] = [Cn33rxyy+C3333rx33]T atx3 = X3I- (12c)

The solution to the differential equations (12) can be obtained by selecting a particular
solution Uf(X3) associated with a given temperature field and body force distributions,
obtaining the complementary solution by solving the homogeneous system associated with
eqns (12a) and, finally, by imposing the boundary conditions (12b,c) on the sum of the two
solutions. The complementary solution can be obtained as a linear combination of the six
(complex) eigensolutions having the following form:t

(13)

where ). and (ca. C3) are the eigenvalues and corresponding eigenvectors of the following
quadratic eigenvalue problem:

t When a repeated index appears at both sides of the equation, it is not summed; 0, means that Cl is a free
index in that equation. For the sake of simplicity in eqns (12)-(19) the subscripts m,ml) in the temperature and
load functions Tm,m/X3)' B~"m/X3) and Q:",m/x,) are omitted.

t In some cases, for instance for square plates with transversely isotropic layers, the eigenvalues of eqn (14)
are repeated. Consequently, the complementary solution in the form (13) is no longer valid, and must be rewritten
as
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(14)

As for the particular solution (p), the method of undetermined coefficients can be
successfully employed [see Hildebrand (1976)]. For instance, for a temperature distribution
varying according to a polynomial law (P) of order R through each layer (9a), the solution
can be obtained, for each layer, by setting

R

U;P(X3) = L A,,(X3)"
r=O

R-l

U~P(X3) = L A 3r (X3)"
r= 0

(15a)

Substituting eqn (15a) in eqn (12a) and collecting terms of equal powers of X 3, an
algebraic system of 3R - 1 equations for the unknown constants A" and A 3 , is obtained.
Analogously, for a temperature distribution varying according to the exponential law (E)
in eqn (9b), the particular solution can be set as follows:

R

U;P(x3) = L Aor e,'"
r=O

R

U~P(X3) = L A 3, e,x'.
1'=0

(15b)

Finally, it is to be remembered that the number of algebraic equations to be solved
simultaneously in order to impose the boundary conditions (12b,c) for an L-Iayered plate
is equal to 6L. The computational effort can be significantly reduced without introducing
any approximation by utilizing the "stiffness method" of Thanjitham and Choi (1991) and
Choi and Thanjitham (1991). This method suggests that we can assume the interfacial
displacements of the plate as unknowns, and secondly, can write the stress continuity
conditions in terms of these new variables. The problem is thus reduced to the solution of
a system of algebraic equations, whose coefficient matrix is a banded and symmetric matrix
of dimension 3(L+ I).

3.2. Antisymmetric angle-ply rectangular plates
Now consider a simply supported rectangular plate with antisymmetric angle-ply

lamination scheme. In this case, the distributions of the thermoelastic coefficients C,o,,,
C,,/i/i, C,/hfJ' C,3,3, CI.,,,Cl.33, k,o and k33 (with f3 of- CI.) are even functions with respect to the
plate midplane, whereas C'''fJ' C'3fJ3' C'fJ33,CI.'fJ and k XfJ are odd functions. Suppose that the
plate is subjected to a temperature field varying according to an antisymmetric distribution
through the thickness. For instance, the plate is exposed to changes in the temperature
equal to ±AT ex,) at the top and bottom faces, so that the functions Tm,mr/x3) in eqn (8)
turn out to be odd functions. Hence, the following displacement representation is adopted
for each term of order m" mfJ:

u, = U~ (X3) cos (6,x,) sin (6fJxfJ) + U~(X3) sin (6ax,) cos (6fJXri)

U3 = U~(X3) sin (6,x,) sin (6/ixrJ+ uj(x3) cos (6,xJ cos (6fJxfJ) (16)

where ui and U? (i = 1,3) are unknown functions. The solution is obtained by means of
a procedure similar to that described in Section 3.1. In particular, substituting eqns (8) and
(16) in eqns (7a) and collecting terms varying with the same trigonometric law, the following
system of differential equations is obtained for each layer:

- A" U; +A 2 , U;.33 - A3, U}i +A 4 , U~.3 - As, U~ - A 6x U~ +A 7a U~.33 - As, U~.3

= (C,xaaCl.,x + C"fJfJCl.fJfJ +2C"apCI.'fJ) 6, T (x 3 )
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where the As are defined by

(18)

Similarly, substituting eqns (8) and (16) in eqns (7b, c), the top, bottom and interface
conditions for the unknown functions U;, U;, uL and U~ are found. In particular, the
interface conditions take the form

(19)

Note that, due to the properties of the thermoelastic coefficients and of the temperature
distribution mentioned before, eqns (17) and (19) make the functions U;, U~ and U;, uj
represent the odd and even parts of the displacement components u" U3, respectively.
Correspondingly, making use of eqns (16), it is easy to verify that the solution obtained
satisfies the SS-2 boundary conditions [see e.g. Whitney and Leissa (1969) and Reddy
(1995)], U~ = U, = °on the plate midplane (x, = 0), at x, = 0, Lx.

Moreover, the complementary solution is given by the linear combination of 12 eig
enfunctions, having a form similar to that reported in eqn (13), where [(e;, e;, cL d), A] is
one of the eigenpairs of the eigenvalue problem:

- A IxU; -AoxU; -Alyq -Ar"U/J +A(AsxUj -A 4x uD +A2(A 2a U; +A7a Uft) = Ox

-A 9 U~ - A 10 U~ -J.(A 4 ;· Ui +A Sy U;2) +A2(A II uD = °
(20)

As for the particular solution, again the method of undetermined coefficients can be
used. For instance, for temperature distributions varying according to a polynomial law
through each layer, the solution is obtained by setting

R

U;(2)l'p(X,) = L A;rl(x,)'
r= 0

R-I

U~(2)Pp(X3) = L AWl(xJr.
r=O

(21)
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4. STEADY-STATE HEAT CONDUCTION PROBLEM

The steady-state problem (T I = 0) of a cross-ply laminated plate subject to tem
perature distributions Th(x,) and T'(x,) at the top (t) and bottom (b) faces can be solved
easily. By expanding the prescribed temperatures in the form

Th(t)(.x:~) = I T;;~~~III; sin (6,x,) sin (bI3xl')'
IJIrlJl{;= I

(22)

the solution of the steady-state heat conduction problem can be set in the form as in eqns
(8) and (9b). In fact, substituting eqn (8) in eqns (la), the following ordinary differential
equation for each layer is obtained, with reference to the term of order (m" mp) of the
temperature expansion:

dxj
(23)

The solution of eqn (23) is given by the linear combination of two exponential func
tions:

fE·,·
where ). = 6,. k'

33

(24)

The unknown coefficients in eqn (24) are determined by imposing the boundary and
interface conditions (1 b,c) which, for the problem at hand, reduce to

(25)

The solution of the heat conduction problem can be obtained in a simple way for
uniformly distributed temperatures Th(1) at the two faces of the plate. In fact, in this case
the temperature varies in the X3 direction only, and the second term at the left-hand side of
eqn (23) vanishes; as a consequence, the temperature variation is linear through each
individual layer. The resulting 2L unknown coefficients (where L is the number of layers)
are obtained by imposing eqns (25). For the solution of the elasticity problem, the particular
solution reduces to that given in eqn (15a), with R = 1.

5. A SIMPLE TRANSIENT HEAT CONDUCTION PROBLEM

Many approaches have been proposed for the analysis of the transient heat transfer in
composite media. Eigenvalue approaches, complex series expansions, and integral trans
form techniques are commonly employed for this purpose [see, e.g. Tanigawa et al. (1989,
1991), Padovan (1975a, b, 1974), Reismann (1968) and Han (1987)], giving an exponential
variation of temperature through the thickness. In this case, the particular solution can be
set in the form of eqn (l5b). When the thermoelastic response of the structure is of primary
interest, variational approaches to obtain an approximate solution of the heat conduction
can be successfully employed. Among them, the Biot variational principle should be
mentioned, which automatically satisfies the energy conservation law as a constraint. In
Example 3 of Section 6 the transient problem of a cross-ply laminated plate whose faces
are suddenly exposed to a temperature change f (at the time t = 0), uniform over the plate
external faces, is studied. Following Biot (1970), the heat transfer problem can be divided
into two time steps separated by the time the heat penetrates through the whole plate
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thickness h. If the layers have the same thermal conductivity in the transverse direction,
adopting a quadratic temperature representation, the following result is obtained:

1< 0.0885 (ql<l): for 0 < ( < ql

T(O = 0 for ql < ( < 1

(>0.0885: T(O = T[(1(l_ql)-2((l-ql)+I]

ql = l-exp [ -0.218(0.0~85 -1)] for 0 < « 1

(26a)

(26b)

where ( = 2x3/h is a non-dimensional transverse coordinate measured from either of the
two external faces ( = 4k33 t/ch1, and ql = 3.36J( in eqn (26a) is the non-dimensional heat
penetration depth. In this case, the particular solution for the thermoelasticity problem can
be set in the polynomial form reported in eqn (l5a), with R = 2.

6. NUMERICAL EXAMPLES

The steady-state and transient thermoelastic response of sandwich and laminated
plates will be analysed in this Section. Two different materials are considered, a uni
directional graphite--epoxy composite (material I) and a soft core (material II). The ther
moelastic properties of the two materials are reported below.

Material I

EL = 200 GPa, ET = 8 GPa, GLT = 5 GPa, GTT = 2.2 GPa

VLT = 0.25, VTT = 0.35, IXL = -2x 1O- 6/K, IXT = 50x 1O- 6/K

kL = 50W/(K'm), kT = 0.5W/(K·m).

Material II

E] = 1 GPa, ET = 2 GPa, GIT = 0.8 GPa, GTT = 3.7 GPa

VIT = 0.25, VTT = 0.35, IX] = IXT = 30 X 1O- 6/K, k] = kT = 50W/(K' m)

where subscripts Land T stand for the directions perpendicular and parallel to the fibers
for material I, whereas I and T stand for inplane and transverse directions for material II.
Moreover, displacement and stress components will be given according to the following
non-dimensional forms:

_ (Jii

(Ji) = T-E'
IX, ,

(27)

where':!., = 10-6j"K and Er = 1 GPa are reference thermal expansion and elastic coefficients.
Since the examples have been prepared with the aim of obtaining reference solutions for
assessing laminated plate theories, only the first term in the temperature representation (9)
has been considered (ml = ml = 1) in all the examples.

Example 1
The steady-state thermoelastic bending of a sandwich square plate a x a subject to a

sinusoidal temperature rise at the two external faces [ml = ml = I, TTl = + T, T\ I = - T
in eqn (22)] is analysed first. The thicknesses of the soft core (material II) and the two stiff
external layers (material I, orientation 0°) are equal to 0.6h and 0.2h, respectively, where h
is the thickness of the plate. Hence, the through-the-thickness temperature variation Til is
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(a)
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-10 -5 o 5 10 -0.50 -0.25 000 0.25 0.50

Fig. I. Steady-state thermoelastic bending of a sandwich square plate a x a subject to a sinusoidal
temperature rise at the two external faces (m , = m, = 1, T~ I = + t, Til = - t). Through-the
thickness stress distributions for different values of the aspect ratio: inplane normal stresses (a. b)
it ll and it,,: transverse shear stresses (c, d) it" and it l ]: inplane shear stress (l)(e) 6,,; transverse

normal stress (f) it]].

given by the exponential law (21), which depends on the aspect ratio alh of the plate. For
thin plates the coefficient appearing on the left-hand side of eqn (23) becomes smaller and
smaller, and the temperature tends to assume a linear distribution through each individual
layer. Figures I(a-f) show the plot of the normal stresses iT 1), iT22 and iT33 in the center of
the plate, of the transverse shear stresses iT23 at (aI2, 0) and iT 13 at (0, aI2), and of the inplane
shear stress iT 12 at the corner of the plate (0, 0) for different values of the aspect ratio.
These figures show that the through-the-thickness distributions of some stress components
strongly depend on the aspect ratio of the plate. For example [Fig. I (e)], a complete reversal
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of the inplane shear stresses occurs when thick (alh = 4) or thin (alh = 8-20) plates are
considered. Moreover, it is worth noting that with reference to the composite stiff faces,
higher inplane stress levels occur in the direction perpendicular to the fibers [see Figs 1(a, b))
and, consequently, where the material is softer. Finally, Fig. 1(f) shows that the transverse
normal stress iT33 is very small when compared with the other stress components, suggesting
the possibility of developing two-dimensional refined models based on the assumption of
transverse inextensibility and reduced stiffness coefficients, as presented by Savoia et al.
(1994) for laminated plates under mechanical loads.

Example 2
This example refers to the thermal bending of a four-layered plate with antisymmetric

angle-ply lamination scheme (a, - a, a, - a, material I for all the layers) subject to a steady
state temperature rise distributed uniformly over the plate. Since all the layers have the
same thermal conductivity in the transverse direction, the temperature variation is linear
through the whole plate thickness. With reference to the first term of the temperature
expansion (m l = m2 = 1, T~] = + t, T, J = - n, Figs 2(a-h) show the change of the stress
distributions due to the change in the lamination angle aand the aspect ratio of the plate.
As for the inplane normal stresses at the center of the plate [Figs 2(a, b)) it is worth nothing
that, due to the large difference between the thermal expansion coefficients in the fiber
direction and in the transverse direction, iT] J and iT22 take different signs. As for the transverse
shear stresses, iT 13 at (aI2, 0) presents a self-equilibrated distribution through the thickness,
with maximum values at the interfaces for a= 45". Displacement distributions are presented

(a)
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- - - a/h= 8. "=25
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• uza(a/2,a/2)
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(c)

5 o -5 -10 -15 -20 -25 -10.0 -5.0 0.0 5.0 10.0

Fig. 2. Steady-state thermoelastic analysis of a four-layered angle-ply (Ii, -Ii, Ii, -Ii, material I for
all the layers) square plate a x a subject to a temperature change at the two external faces, uniform
over the plate domain. The first term in the temperature expansion is considered (m, = m, = I,
T~ I = + f, T"l = - f). Non-dimensional stresses: inplane normal stresses (a, b) it" and iT'2;
transverse shear stresses (c, d) iTn and it,,: inplane shear stress (3) it,,; inplane displacements (f, g)

iii and (h) ii,.
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Fig. 2.-Continued.

in Figs 2(f-h). The displacements are given by CO-functions with discontinuous derivatives
at the layer interfaces, and they are different from linear distributions through the whole
plate thickness. Hence, in the case the first-order theory [see e.g. Stavsky (1963), Reddy
and Hsu (1980), Khdeir and Reddy (1991) and Tauchert (1986,1991)] is expected to fail
when evaluating the stress distributions.

Example 3
Finally, the transient solution of a symmetric four-layered square laminate (0 0

, 90",
90°,0°), with material I for all the layers and suddenly exposed to a uniform temperature
change T (at the time t = 0) over the plate surfaces, is presented. The through-the-thickness
distribution of the temperature [see eqn (26)], stress and displacement components are
presented in Figs 3(a-h) for different times. t = 00 represents the final steady-state condition
when the whole plate reaches the temperature T. Even in this case, the two normal stress
components take opposite signs in both the external and internal layers [Figs 3(b,c)].
Moreover, both the transverse shear stresses are given by self-equilibrated distributions
through the thickness, and maximum values are found at the layer interfaces [see Figs
3(e,f)]. The displacements are quite different from the constant distributions assumed in
the classical theory, not only in the transient phase, but even when the whole plate is heated.
Hence, even in this case, it seems to be indispensable to use displacement representations
through each individual layer in order to predict accurate stress distributions.

7. SOME REMARKS ON NAVIER-LIKE SOLUTIONS

In Section 3 a Navier-like solution for simply supported laminated plates has been
derived. This approach represents the simplest case for which analytical solutions can be
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derived. It allows the reduction of the three-dimensional elasticity problem described by
partial differential equations to one governed by a system of ordinary differential equations
with respect to the transverse coordinate x 3• In the case of laminate theories, the procedure
reduces a two-dimensional problem to the solution of a system of algebraic equations,
provided some special simply supported boundary conditions are imposed at the edges. In
fact, only in this case no boundary layers arise at the plate edges, and the problem reduces
to an interior domain problem. It is worth noting that this special kind of boundary
conditions can cause significant mathematical problem for plates subject to thermal loads.

For instance, consider a cross-ply, symmetrically laminated rectangular plate subject
to a linear temperature distribution through the thickness. Making use of the classical
laminate theory, the displacement equations of equilibrium can be reduced to

D'l W.Illl +2(D I2 +2D66 )W.11 22 +D22 w.222 2 = q3 -MT, II -MI.22 (28)

where W is the transverse deflection, Dij are the bending stiffnesses of the laminate, and
MY and MI are the thermal moments. For an a x a square plate subject to uniformly
distributed thermal moments MT(xJ,x2) = M T and transverse load Q3(XI,X2) = q, making
use of a Navier-like approach, the following expressions are found for w, the twisting
moment M 12 and the bending moment Mil' respectively:
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Fig. 3. Transient analysis of a cross-ply laminate (Oc. 90', 90", OC), with material I for all the layers
(h = 2, alh = 8), and suddenly exposed to a temperature change t (at the time I = 0), uniform over
the plate surfaces. The first term only in the temperature expansion is considered (m l = m2 = I).
(a) Through-the-thickness temperature distribution at different times. Non-dimensional stresses:
inplane normal stresses (b, c) all and an; inplane shear stress (d) a12 ; transverse shear stresses (e, f)

a" and a,,; inplane displacements (g, h) ii, and ii,.
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Fig. 3.--Continued.
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(29b)

It is worth noting that not all the series expressions in eqns (29) converge when thermal
bending moments are present, whereas they always converge when mechanical loads only
are present. For instance, consider the case q = 0 and M T = I, and set
A = D 1], B = (D]2+2D66),C = D22 • The series appearing in the transverse displacement
(29a) is absolutely convergent at each point (XI. x2) and, therefore, is convergent. In fact,
setting D = min(A, B, C) and taking the relation m2+n2 :?: 2mn into account, one obtains
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m 2+n2 m 2+n2
----------sin amXI sin f3nx2 :( ----------
mn(Am4 +2Bm2n2+Cn 4

) mn(Am4 +2Bm2n2+Cn 4
)
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which is a convergent series [see Smirnov (1964)]. It is interesting to note that, for the same
loading condition, the Navier-like solution predicts unbounded twisting moment M I2 at
the corners of the plate. In fact, setting (XI. X2) = (0,0) and D = max(A, B, C), one obtains

m 2 +n2 I I---------- >- >- ----
(Am 4 +2Bm2n2+ Cn4

) ;/ D(m2+n2) ;/ D(m+n)2
(31 )

which diverges [see Smirnov (1964)].
By making use of the properties of the alternating series it can be shown that the

twisting moment in the interior of the plate, 0 < Xl < a and 0 < X2 < b, as well as the
bending moments Mil and M n in the whole plate domain converge to finite values when
the corresponding series in eqns (29) are computed. In a similar way, it is easy to show
that, when the uniform transverse load q only is considered, all of the series appearing in
eqns (29) are absolutely convergent, For instance, setting q = I and M T = 0 in the transverse
displacement expansion presented in eqn (29a), the following is obtained:

where D = min(A, B, C). The series reported in eqn (32) converges. Note that the con
vergence rate of all the series presented in eqns (29) when a transverse load q is applied is
faster with respect to the case when thermal bending moments M T are assigned. For
instance, the convergence of displacements and moments for an isotropic square plate
(a = b = 10, h = I) for an increasing number of terms in the corresponding series is shown
in Figs 4(a, b) for mechanically and thermally loaded plates, respectively. The twisting
moment M 12 has been evaluated at the corner of the plate (0,0) and at a point very close
to it (O.Ola,O.Ola). Figure 4(b) clearly shows, for the uniformly thermally loaded plate,
that the series expansion (29b) evaluated at the corner of the plate does not converge.
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Fig. 4. Convergence of Navier-like solutions for square isotropic plates subject to mechanical (a)
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